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Abstract

We construct a generalization of pure lattice gauge theory (LGT) where the role of the gauge
group is played by a tensor category. The type of tensor category admissible (spherical, ribbon,
symmetric) depends on the dimension of the underlying manifold (≤ 3,≤ 4, any). Ordinary LGT is
recovered if the category is the (symmetric) category of representations of a compact Lie group. In
the weak coupling limit we recover discretized BF-theory in terms of a coordinate-free version of
the spin foam formulation. We work on general cellular decompositions of the underlying manifold.

In particular, we are able to formulate LGT as well as spin foam models of BF-type with quantum
gauge group (in dimension≤ 4) and with supersymmetric gauge group (in any dimension).

Technically, we express the partition function as a sum over diagrams denoting morphisms in the
underlying category. On the LGT side this enables us to introduce a generalized notion of gauge
fixing corresponding to a topological move between cellular decompositions of the underlying
manifold. On the BF-theory side this allows a rather geometric understanding of the state sum
invariants of Turaev/Viro, Barrett/Westbury and Crane/Yetter which we recover.

The construction is extended to include Wilson loop and spin network type observables as well
as manifolds with boundaries. In the topological (weak coupling) case this leads to topological
quantum field theories with or without embedded spin networks.
© 2002 Elsevier Science B.V. All rights reserved.

MSC:57M27; 81T25; 81T13; 57R56; 81R50

Subj. Class.:Quantum field theory

Keywords:Lattice gauge theory; State sum invariants; Quantum groups; Spin foams

1. Introduction

We start by describing the main motivations of the present work.
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Lattice gauge theory (LGT) is our most successful approach to date at describing the
non-perturbative regime of the standard model, such as bound states of QCD. If the gauge
group is Abelian there is a well known duality transformation exchanging the strong with the
weak coupling regime[1]. At the same time group valued degrees of freedom are replaced
with character valued degrees of freedom. As the latter also form a group the dual theory
is again a gauge theory living on the dual lattice. Even in the non-Abelian case a “dual”
formulation is possible where the degrees of freedom are “representation valued”. While
this is not a gauge theory anymore it is known to be expressible as a (modified) spin foam
model[2]. This dual model was explicitly constructed for hypercubic lattices in[3]. There,
it was also shown to be strong–weak dual to the ordinary formulation of LGT. Thus, a
better understanding of this formulation and improved techniques to handle it appear of
great value in order to extract a strong-coupling expansion.

Quantum groups have their origin as symmetries of integrable models. Thus, it is natural
to ask whether they can be “gauged”, i.e., whether one could formulate gauge theories with
quantum groups. Indeed, this is supported, e.g., by an analysis of Chern–Simons theory
where a necessary regularization of the path integral naturally leads to quantum gauge groups
[4]. At the non-perturbative level LGT appears clearly the most suitable starting point for
such a development. Indeed, a proposal for aq-deformed LGT in three dimensions has been
made[5]. In four dimensions a generalized LGT for ribbon categories was constructed on
simplicial decompositions of the underlying manifold[6]. A unified approach, preferably
for general cellular decompositions, is clearly desirable.

Spin foams have emerged as a description of space–time both in the canonical loop
approach to quantum gravity as well as in covariant path integral approaches[7]. On the
other hand, pure quantum gravity in three dimensions turns out to be essentially quantum
BF-theory, which is topological[8]. Indeed, a well defined path integral description of
BF-theory can be given in the spin foam framework. A predecessor to these ideas is the
state sum model of Ponzano and Regge[9]. q-deformations of the gauge group come about
when a cosmological constant is included[10]. Spin foam models of BF-theory have recently
been the starting point for several proposals for quantum gravity also in four dimensions
[11] (see also the review[12]).

A completely new type of algebraic topology started to emerge in the 1980s, initiated by
the application of quantum field theoretic ideas to low-dimensional topology. In particular,
this led to new kinds of topological invariants of manifolds and the notion of topological
quantum field theory (TQFT). The most prominent invariants are the surgery invariant of
Reshetikhin and Turaev in three dimensions[13], the state sum invariant of Turaev and Viro
in three dimensions[14,15]and the state sum invariant of Crane and Yetter in four dimen-
sions[16,17]. All those invariants require a (quantum) group or, more generally, a certain
type of category as input. It turns out that using ordinary groups (as compared to quantum
groups) does not lead to interesting new invariants. The reason for this can be seen to lie in
the fact that the quantum groups “feel” more about the topology than the ordinary groups.
However, this remains somewhat obscure in the standard approaches to the invariants.

This work aims to contribute to the above-mentioned developments as well as to improve
our understanding of the connections between them.

We construct a generalization of pure LGT where the role of the gauge group is played
by a monoidal (or tensor) category. Ordinary LGT is recovered if the category is taken to be
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the category of representations of a compact Lie group. We make heavy use of the relation
between (types of) tangle diagrams and (types of) monoidal categories as developed in
[18–20]. We suitably extend this to a diagrammatic calculus which allows to express the
partition function of LGT in a purely diagrammatic way. More concretely, the diagram
defining the partition function as a morphism in the given category is constructed from a
cellular decomposition of the underlying manifold. This diagram can be considered as the
“projection” onto the plane of a graph embedded into the manifold.

The cases of symmetric and nonsymmetric categories are different in an essential way.
In the former case a lattice (combinatorial 2-complex) is sufficient to define LGT. In par-
ticular, this lattice can be obtained as the dual 2-skeleton of a cellular decomposition of a
manifold of arbitrary dimension which need not be orientable. In the nonsymmetric case
an orientable manifold is required and the orientation indeed enters into the construction
of LGT. Furthermore, the dimension of the manifold is restricted by the type of cate-
gory. Concretely, the maximal allowed dimension is 2, 3 and 4 for pivotal, spherical and
ribbon categories, respectively. Indeed, the geometric nature of our construction makes
this connection between the dimension and the admissible type of category rather trans-
parent through the isotopy properties characterizing the tangle diagrams associated with
the category.

The gauge invariance properties of conventional LGT are shown to extend to our gen-
eralized LGT. Gauge fixing can be reexpressed as the invariance of the partition function
under a certain topological move relating different cellular decompositions of the manifold.
The standard Wilson loop and spin network observables are included in our generalized
LGT. However, in the nonsymmetric case the maximal allowed dimension for a given type
of category drops by 1. Extending our formulation to manifolds with boundaries we obtain
(as expected) spin networks as states on the boundary and consider briefly the construction
of the associated TQFTs.

In the weak coupling limit we obtain (discretized) BF-theory and recover the above-
mentioned state sum invariants of Turaev and Viro[14], Barrett and Westbury[15] and
Crane and Yetter[16,17].

Section 2introduces the relevant types of categories, their diagrammatics and the notion of
semisimplicity.Section 3reviews how those categories arise as categories of representations
of groups, supergroups and quantum groups. Furthermore, the diagrammatic calculus as well
as the notion of semisimplicity is further developed for these cases. The partition function
of generalized LGT is introduced inSection 4.1. First, a diagrammatic representation of the
partition function of ordinary LGT is derived. Then, the generalization to different types
of categories is performed. Gauge symmetry and gauge fixing are considered inSection 5.
Observables of Wilson loop and spin network type are implemented inSection 6. The
partition function is extended to manifolds with boundaries inSection 7. (Generalized)
spin networks emerge as boundary states and the construction of the relevant TQFTs in
the topological case is sketched. Special cases are considered inSection 8. In particular,
we consider how the spin foam picture emerges. We discuss the topological weak coupling
limit (BF-theory) and the specialization to the various state sum invariants. An outlook is
presented inSection 9.

Propositions and lemmas for which the proof is not included are either to be found in the
given references or verified straightforwardly.
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2. Categories and diagrams

In this section we introduce the various types of categories which are to play the role
of the “gauge symmetry” for generalized LGT. Furthermore, we introduce the associated
diagrammatics which is instrumental in our formulation of LGT.

2.1. Monoidal categories with structure

We start by introducing the necessary categorial notions. A standard reference for general
category theory and monoidal categories is[21]. Pivotal, spherical and ribbon categories as
well as their diagrammatic representations are introduced in[18], [20] and[19], respectively.

In the following, category is always taken to meanC-linear category. By this we mean
that the set Mor(V,W) of morphisms from an objectV to an objectW forms a vector space
over the fieldC. Furthermore, the composition of morphisms

Mor(U, V)× Mor(V,W) → Mor(U,W), (f, g) �→ g ◦ f
is required to be bilinear.

Definition 2.1. A (strict) monoidal categoryis a categoryC together with a bifunctor⊗ :
C × C → C (called tensor product) and a choice of unit element1 ∈ C. Furthermore we
require the equalities(U ⊗ V) ⊗ W = U ⊗ (V ⊗ W) andU ⊗ 1 = U = 1 ⊗ U. We also
require that Mor(1, 1) = C and the monoidal structure on morphisms be identified with
their tensor product as vectors.

Definition 2.2. A rigid monoidal categoryis a monoidal categoryC together with a con-
travariant functor∗ : C→ C calleddual and morphisms evV : V ∗ ⊗ V → 1 (evaluation),
coevV : 1 → V ⊗ V ∗ (coevaluation) such that

(idV ⊗ evV ) ◦ (coevV ⊗ idV ) = idV , (evV ⊗ idV ∗) ◦ (idV ∗ ⊗ coevV ) = idV ∗

and for a morphismΦ : V → W we have its dualΦ∗ : W∗ → V ∗ given by

Φ∗ = (evW ⊗ idV ∗) ◦ (idW∗ ⊗Φ⊗ idV ∗) ◦ (idW∗ ⊗ coevV ).

Definition 2.3. Let C be a rigid monoidal category together with a natural equivalence
τV : V �→ V ∗∗ such thatτV ⊗ τW = τV⊗W andτ−1

V ∗ = (τV )
∗. DefineẽvV : V ⊗ V ∗ → 1

andc̃oevV : 1 → V ∗ ⊗ V as

ẽvV := evV ∗ ◦ (τV ⊗ idV ∗), c̃oevV := (idV ∗ ⊗ τ−1
V ) ◦ coevV ∗ .

If for all morphismsΦ : V → W the equality

Φ∗ = (idV ∗ ⊗ ẽvW) ◦ (idV ∗ ⊗Φ⊗ idW∗) ◦ (c̃oevV ⊗ idW∗)

holds we callC apivotal category. For a morphismΦ : V → V define tr−(Φ) : 1 → 1 and
tr+(Φ) : 1 → 1 as

tr−(Φ) := evV ◦ (idV ∗ ⊗Φ) ◦ c̃oevV , tr+(Φ) := ẽvV ◦ (Φ⊗ idV ∗) ◦ coevV .
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For an objectV define morphisms1 → 1 as

loop−V := tr−(idV ), loop+V := tr+(idV ).

Lemma 2.4. In a pivotal category the identitiestr−(Φ) = tr+(Φ∗) andtr+(Φ) = tr−(Φ∗)
hold for any morphismΦ.

Definition 2.5. A spherical categoryis a pivotal category such that for all objectsV and
morphismsΦ : V → V the equality tr−(Φ) = tr+(Φ) holds. Write tr := tr+ = tr− and
loop := loop+ = loop−.

Definition 2.6. A braided monoidal categoryis a monoidal category together with a natural
equivalenceψV,W : V ⊗W → W ⊗V (calledbraiding) such that the following conditions
hold:

ψU⊗V,W = (ψU,W ⊗ idV ) ◦ (idU ⊗ ψV,W),

ψU,V⊗W = (idV ⊗ ψU,W) ◦ (ψU,V ⊗ idW), ψV,1 = idV = ψ1,V .

Definition 2.7. A ribbon categoryis a rigid braided monoidal category together with a
natural equivalenceνV : V → V such that

νV⊗W = ψ−1
V,W ◦ ψ−1

W,V (νV ⊗ νW), ν1 = id1, νV ∗ = (νV )
∗.

Lemma 2.8. A ribbon category is a spherical category by setting

τV := (evV ⊗ idV ∗∗) ◦ (ψ−1
V ∗,V ⊗ idV ∗∗) ◦ (νV ⊗ coevV ∗).

Definition 2.9. A symmetric categoryis a rigid monoidal category together with a natural
equivalenceψV,W : V ⊗W → W ⊗ V such that the following conditions hold:

ψU⊗V,W = (ψU,W ⊗ idV ) ◦ (idU ⊗ ψV,W),

ψU,V⊗W = (idV ⊗ ψU,W) ◦ (ψU,V ⊗ idW),

ψW,V ◦ ψV,W = idV⊗W, ψV,1 = idV = ψ1,V .

Note that the usual definition of “symmetric” does not imply rigidity. We include it here
for uniformity of terminology.

Lemma 2.10. A symmetric category is a ribbon category by noting that the symmetric
structureψ is a self-inverse braiding and by settingνV := idV .

2.2. Diagrams and isotopy invariance

The types of categories we will be mainly interested in are thepivotal, spherical, ribbon,
andsymmetriccategories. Morphisms in those categories can be conveniently described
by directed tangle diagrams with additional structure. Remarkably, the denoted morphisms
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Fig. 2.1. Elementary tangle diagrams and their assigned morphisms.

remain invariant under certain isotopies of these diagrams. This plays a key role in the
construction of the partition function of generalized LGT. We introduce this diagrammatics
in this section.

We start by considering the pivotal case. A diagram (without coupons) consists of a finite
number of non-intersecting lines in the plane. The lines end at the top or bottom line of the
diagram or form closed loops. Each line carries an object label and an arrow. A diagram as
a whole defines a morphism in the category. If the object labels of the lines ending at the top
areV1, . . . , Vn and the ones ending at the bottom areW1, . . . ,Wm it defines a morphism
V1 ⊗ · · · ⊗Vn → W1 ⊗ · · · ⊗Wm. For lines with an arrow pointing upwards the respective
object is replaced by its dual.

For elementary diagrams the assignments are listed inFig. 2.1. Note that the unit object1
is usually not explicitly represented in the diagrams. Diagrams placed horizontally next to
each other correspond to the tensor product of morphisms. For more complicated diagrams
the morphism is obtained by slicing the diagram horizontally into elementary slices and
composing the corresponding morphisms from top to bottom.

We need to introduce another elementary diagram: acoupon. This is a rectangle which is
connected to a certain number of lines on the top and the bottom (seeFig. 2.2). Furthermore,
it carries a label denoting a morphism from the tensor product of the objects (or their duals)
labeling the lines at the top to the corresponding tensor product at the bottom. Under the
assignment of morphisms to diagrams a coupon is simply assigned the morphism with
which it is labeled.

The morphism associated with such a diagram is invariant under planar isotopy. That
is, any diagram that is related to a given one by an isotopy inR2 (holding the endpoints
of lines at the top and bottom fixed) yields the same morphism. Note that a closed dia-
gram, i.e., a diagram without endpoints denotes a morphism1 → 1 and thus an element
in C.
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Fig. 2.2. Coupon.

Fig. 2.3. Trace property defining a spherical category.

We now turn to the spherical case. The additional property of a spherical category as com-
pared to a pivotal one (Definition 2.5) can be easily expressed diagrammatically (Fig. 2.3).
The consequence is an enhanced isotopy invariance of the diagrammatics. That is, given a
closed diagram inscribed on a 2-sphere, any isotopic deformation followed by piercing the
2-sphere at some point to identify it with the plane yields the same morphism.

For ribbon categories we need to modify the diagrammatics as follows. Instead of lines
we now consider ribbons. One can think of this as equipping the lines with aframing. The
orientation of a ribbon (i.e., the framing) at its endpoints is always “face up”. In particular,
a ribbon has an “upside” and a “downside” and thus an orientation. This is also true for
ribbon loops, e.g., a Möbius strip is not allowed.

We also have additional elementary diagrams in the ribbon case. One must certainly be
a twist of the ribbon (and its inverse). Furthermore, we allow crossings of ribbons, with a
distinction between over- and under-crossings (seeFig. 2.4, where the arrows are omitted
in the diagrams).

The isotopy invariance of the ribbon diagrammatics is even stronger than in the spherical
case. Indeed, we can think of a diagram as obtained by projecting a ribbon tangle inR3 (or

Fig. 2.4. Additional ribbon diagrams and their assigned morphisms.
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Fig. 2.5. The crossingψV,W in the symmetric case.

S3) onto the plane. Then, the projection of any isotopic ribbon tangle inR3 (or S3) will
yield a diagram corresponding to the same morphism. This is because (the ribbon version
of) the Reidemeister moves give rise to identities of morphisms. Note that in case of an open
diagram, i.e., a diagram with endpoints, the endpoints are to be held fixed and no isotopy
involving the moving of a ribbon “around” endpoints is allowed.

When drawing ribbon diagrams it is sometimes convenient and sufficient to just draw
lines instead of ribbons. The convention in this case is that a line represents a ribbon which
lies everywhere “face up”. This is called theblackboard framing.

Note that as a ribbon category is in particular a spherical category, we can convert a
diagram for a morphism in the latter into a diagram for the same morphism in the former.
This is simply achieved by introducing the blackboard framing.

Finally we consider the case of symmetric categories. The diagrammatics is again similar
to the pivotal and spherical cases. That is, we have again lines instead of ribbons. The only
difference is that crossings are allowed, and there is only one type of crossing (seeFig. 2.5).

The invariance properties of the diagrammatics are the strongest in the symmetric case.
Consider a set of coupons, a set of endpoints at the top and bottom and a specification
of which endpoint (on the border of the diagram or on a coupon) is to be connected to
which other one and with which arrow direction. This combinatorial data already specifies
a morphism in the category. That is, any diagram that satisfies this combinatorial data yields
the same morphism.

A symmetric category is in particular a ribbon category. Thus, we can convert the diagram
for a morphism in the latter into the diagram for the same morphism in the former. This is
simply achieved by removing the framing (as the twist is now trivial) and forgetting about
the distinction between over- and under-crossings which become identical.

The invariance properties of the diagrammatics for the different types of categories are
summarized inTable 1. By slight abuse of terminology we refer to graphs which do not
live in the plane but are embedded into a manifold or lattice as diagrams in the same way

Table 1
Diagrammatic invariance for different types of categories

Type of category Diagrammatic invariance

Pivotal Isotopy inR2

Spherical Isotopy inS2

Ribbon Isotopy inR3, S3

Symmetric Combinatorial
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(although they do not directly define a morphism). If an explicit distinction is necessary
we refer to these asembedded diagramsand to planar ones that are obtained from these as
projected diagrams.

Although having historically a more restricted meaning, we define the termspin network
here to mean precisely a diagram as considered above. Thus, there are different types of spin
networks depending on the type of category. The original version is for the representation
category of the group SU(2)[22]. Furthermore, there one considers only lines labeled by
irreducible representations and one type of coupon (represented by a trivalent vertex), which
is a suitably normalized intertwiner between three incident representations.

2.3. Semisimplicity

Recall that an objectV is called simple if Mor(V, V) ∼= C as a vector space. Usually one
defines a category to be semisimple if any object decomposes into a direct sum of simple
objects. However, we need to adopt a more general definition which does not require direct
sums[23].

Definition 2.11. A category is calledsemisimpleif for each objectV there exists a finite
set of simple objectsVi and morphismsfi : V → Vi, gi : Vi → V such that

idV =
∑
i

gi ◦ fi.

We call this data also adecompositionof V . We also requireMor(V,W) = 0 if V,W are
simple and non-isomorphic objects.

Proposition 2.12. LetC be a semisimple category. We define a morphismTV : V → V for
each object V as follows. LetVi, fi : V → Vi, gi : Vi → V with i ∈ I be a decomposition
of V. LetI ′ := {i ∈ I|Vi ∼= 1}. Then

TV :=
∑
i∈I ′

gi ◦ fi.

This definition is well(independent of the decomposition) and gives rise to the following
properties:

(a) T1 = id1.
(b) TV = 0 for V simple andV � 1.
(c) T is a projector, i.e., T 2

V = TV .
(d) T defines a natural transformation of the identity functor with itself. That is, for Φ :

V → W a morphism we haveTW ◦Φ = Φ ◦ TV .

If furthermoreC is monoidal:

(e) TV ⊗ TW = TV⊗W ◦ (TV ⊗ idW) = TV⊗W ◦ (idV ⊗ TW).

If C is rigid monoidal:

(f) T is self-dual, i.e., (TV )∗ = TV ∗ .
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If C is ribbon:

(g) ψV,W ◦ (TV ⊗ idW) = ψ−1
W,V ◦ (TV ⊗ idW).

(h) νV ◦ TV = TV .

Proof. We start by showing thatT is well defined. Let{Vi, fi, gi}i∈I and{Ṽj, f̃j, g̃j}j∈J be
two decompositions of the objectV . DefineI ′ := {i ∈ I|Vi ∼= 1} andJ ′ := {j ∈ J |Ṽj ∼= 1}.
We need to show thatTV := ∑

i∈I ′ gi ◦ fi andT̃V := ∑
j∈J ′ gj ◦ fj are equal. SinceVi and

Ṽj are simple objects any morphism̃fj ◦ gi must be zero ifVi � Ṽj. This implies

TV =
∑

i∈I ′,j∈J
g̃j ◦ f̃j ◦ gi ◦ fi =

∑
i∈I ′,j∈J ′

g̃j ◦ f̃j ◦ gi ◦ fi

=
∑

i∈I,j∈J ′
g̃j ◦ f̃j ◦ gi ◦ fi = T̃V .

Thus,TV is well defined. Note that the above expression also proofs the projection property
(c), as the term in the middle is̃TV ◦ TV = T 2

V . The properties (a) and (b) follow immedi-
ately by taking the canonical decomposition of a simple object. The proof of (d) is a small
modification of the proof of well definedness. We now have two different objectsV,W and
a morphismΦ : V → W sandwiched in between. Considering decompositions ofV and
W we get as aboveΦ ◦ TV = TW ◦Φ ◦ TV = TW ◦Φ.

Now assumeC to be monoidal. Let{Vi, fi, gi}i∈I and{Wj, pj, qj}j∈J be decompositions
of the objectsV andW and {Uk, ak, bk}k∈K a decomposition ofV ⊗ W . Consider the
compositionbk ◦ ak ◦ (gi ⊗ qj) ◦ (fi ⊗ pj). Observe thatak ◦ (gi ⊗ qj) vanishes if two
of the objectsVi,Wj,Uk are isomorphic to1 while the third one is not. Thus, defining the
restricted index sets as above, summing overI ′, J ′,K or I ′, J,K′ or I, J ′,K′ yields the
same morphism. This proves (e).

Now assumeC to be rigid. Let{Vi, fi, gi}i∈I be a decomposition of the objectV . Then
{V ∗

i , g
∗
i , f

∗
i }i∈I is a decomposition ofV ∗. AsV ∗

i
∼= 1 iff Vi ∼= 1, this implies property (f).

Now assumeC to be ribbon. Properties (g) and (h) follow by the naturality ofψ andν
and their propertiesψ1,W = idW = ψ−1

W,1 andν1 = id1. �

Using the diagrammatic language introduced above we can represent the morphismT by
a coupon. AsT is defined for any object we represent it simply by a coupon without label.
The properties ofT can be expressed as diagrammatic identities (seeFig. 2.6).

As this will be of importance later, we note that due to “factorization” ofT though the unit
object1 we can define a “braiding” composed withT also in a general monoidal category.

Definition 2.13. Let C be a semisimple monoidal category. LetV , W be objects inC. Let
Vi, fi : V → Vi, gi : Vi → V with i ∈ I be a decomposition ofV , I ′ := {i ∈ I|Vi ∼= 1}.
We defineψT(V),W : V ⊗W → W ⊗ V andψW,T(V) : W ⊗ V → V ⊗W as follows:

ψT(V),W :=
∑
i∈I ′

(idW ⊗ fi) ◦ (gi ⊗ idW), ψW,T(V) :=
∑
i∈I ′

(fi ⊗ idW) ◦ (idW ⊗ gi).
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Fig. 2.6. Properties ofT .

This definition simply uses the property1 ⊗ W = W ⊗ 1. Obviously, in the ribbon (or
symmetric) caseψT(V),W = ψV,W ◦ (TV ⊗ idW) andψW,T(V) = ψW,V ◦ (idW ⊗ TV ). We
can represent thisT -braiding diagrammatically as inFig. 2.7. This can be considered as
an additional elementary diagram in the pivotal and spherical case. Note that its properties
are analogous to those of a braiding in a symmetric category. In particular, we have the
identity depicted inFig. 2.8. (This follows by writing theT -morphism diagrammatically as
a decomposition and using invariance under planar isotopy.) Indeed, this can be considered
the generalization of property (h) ofProposition 2.12to the non-ribbon case.

Fig. 2.7. TheT -braidingψT(V),W . The equality indicates that there is just one type of crossing—no distinction
between “over” and “under”.
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Fig. 2.8. “Twisting identity” for theT -braiding.

Important identities for theT -morphism on a tensor product are the following.

Proposition 2.14. LetC be a semisimple pivotal category. For V simple we haveloop±V �=
0.For two inequivalent simple objects V and W the morphismsTV ∗⊗W andTW⊗V ∗ are zero.
Furthermore, for V simple we have the identities

TV ∗⊗V = c̃oevV ◦ (loop−V)
−1 ◦ evV , TV⊗V ∗ = coevV ◦ (loop+V)

−1 ◦ ẽvV .

The first one is diagrammatically represented inFig. 2.9while the second one is obtained
by reversing all arrows.

Proof. LetV andW be simple objects. We can use coevV to identify the morphism spaces
Mor(V ∗ ⊗ W, 1) and Mor(W, V). Thus, by simplicity the dimension of Mor(V ∗ ⊗ W, 1)
is zero ifV � W and 1 ifV ∼= W . This impliesTV ∗⊗V = 0 in the former case. In the
latter we have dim(Mor(V ∗ ⊗ V, 1)) = 1 and in the same way dim(Mor(1, V ∗ ⊗ V)) = 1.
This determines a one-dimensional space of morphismsV ∗ ⊗ V → V ∗ ⊗ V to which
TV ∗⊗V must belong. On the other hand,̃coevV ◦ evV is an element of this space as well.
Furthermore it is non-zero as it can be converted to idV⊗V ∗ by suitable composition with
coevV andẽvV ∗ . Thus, there exists a complex numberλ such thatTV ∗⊗V = λ c̃oevV ◦ evV .
Composing on both sides with evV yields evV = λ loop−VevV . As evV is non-zero this
implies loop−V �= 0 and furthermoreλ = (loop−V)−1.

The statements forV andV ∗ interchanged follow correspondingly. �

Proposition 2.15. LetC be a semisimple spherical category. The permutation identity for
the T-morphism on a tensor product depicted inFig. 2.10holds. (The object labels and
arrows on the lines are arbitrary.)

Fig. 2.9. Identity for theT -morphism on a tensor product of a simple object with its dual. All lines are labeled by
the same object.
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Fig. 2.10. Permutation identity for theT -morphism on a tensor product.

Proof. Choose decompositions for the two objects. Using naturality ofT the identity can
be reduced to an identity for the simple objects in the decomposition. Thus, we have a
tensor product of two simple objects and we can applyProposition 2.14. For the non-zero
contributions we use the identity forTV ∗⊗V on one side ofFig. 2.10and the one forTV⊗V ∗
on the other. As loop+ = loop− in a spherical category we obtain equality. �

3. Representation theory

In this section we review how the different types of categories arise as categories of
representations of groups, supergroups and various types of Hopf algebras. We consider the
issue of semisimplicity in this context. Furthermore, we develop the necessary graphical
notation to represent functions on a group, supergroup or quantum group.

3.1. Groups

A relevant reference for Lie groups (representation theory, Haar measure, Peter–Weyl
decomposition) is, e.g.,[24]. Throughout this section, letG be a group.

3.1.1. Representation categories
In the following we consider the category of representations ofG, which provides the

most important example of a symmetric category. We denote the action of a group element
g on a vectorv by g � v.

Proposition 3.1. The categoryR(G) of finite-dimensional(left) representations of a group
G together with their intertwiners is a symmetric category in the following way:

• The monoidal structure is given by the tensor product of representations. That is, for two
representation V, W we have a representationV ⊗W via

g � (v⊗ w) := g � v⊗ g � w.
The unit object1 is the trivial representation.

• The rigid structure is given by the dualV ∗ of a representation V. This is the dual vector
space with the action

〈g � f, v〉 := 〈f, g−1 � v〉
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for all g ∈ G, v ∈ V, f ∈ V ∗. evV is simply the pairing betweenV ∗ and V while
coevV : 1 �→ ∑

i vi ⊗ f i where{vi} is some basis of V and{f i} the corresponding dual
basis ofV ∗.

• The symmetric structure is given by the trivial braiding

ψV,W(v⊗ w) = w⊗ v.

The simple objects inR(G) are the irreducible representations of G.

We now have the diagrammatic formalism ofSection 2.2at our disposal for group rep-
resentations and their intertwiners.

3.1.2. Representative functions
We shall be particularly interested in the diagrammatic representation of functions on the

group considered as representations. We discuss this in the following.
Let Calg(G) denote the complex valued representative functions onG. These are the

functions that arise as matrix elements of finite-dimensional complex representations ofG.
That is, any representative function is of the form

g �→ 〈φ, ρV (g)v〉, (3.1)

whereV is some finite-dimensional representation,ρV denotes the representation matrix
andv ∈ V, φ ∈ V ∗. We can thus identify the function with the vectorφ⊗ v in V ∗ ⊗V . The
sum of two representative functions is again a representative function by the identity

〈φ, ρV (g)v〉 + 〈φ′, ρV ′(g)v′〉 = 〈φ + φ′, ρV⊕V ′(g)(v+ v′)〉 (3.2)

for the direct sum of representations. Similarly for the product

〈φ, ρV (g)v〉〈φ′, ρV ′(g)v′〉 = 〈φ ⊗ φ′, ρV⊗V ′(g)(v⊗ v′)〉 (3.3)

by the tensor product of representations.
Consider the action ofG on its algebra of functions by conjugation as

(g � f)(h) := f(g−1hg). (3.4)

As we will see inSection 5.1this action is intimately related to gauge transformations in
LGT. For a representative function we have the identity

(h � (φ ⊗ v))(g) = (h � φ ⊗ h � v)(g) = (φ ⊗ v)(h−1gh). (3.5)

That is, this action by conjugation is just the same thing as the action onV ∗ ⊗ V consid-
ered as a tensor product of representations. Consequently, we can denote a representative
function diagrammatically by a double line, one forV and one forV ∗ (seeFig. 3.1a). In
the following we consider arbitrary elements ofV ∗ ⊗ V as representative functions so that
besides the addition by direct sum(3.2) we also have the vector addition insideV ∗ ⊗ V .
By definition, the evaluation of a function at the group identity is just the evaluation of the
pairing (seeFig. 3.1b). As the multiplication is given by the tensor product(3.3) it can be
diagrammatically represented as inFig. 3.1c.
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Fig. 3.1. (a) Double line diagram for representative function; (b) evaluation at the group identity; (c) multiplication
of representative functions; (d) a character; (e) expansion of a representative function on a product of group
elements.

A type of function that is of particular importance in LGT is the characterχV of a
representationV . As an element ofV ∗ ⊗ V it is

χV =
∑
n

φn ⊗ vn, (3.6)

where{vi} denotes a basis ofV and{φi} a dual basis ofV ∗. Diagrammatically, this is an
(arrow-reversed) coevaluation (seeFig. 3.1d). The invariance of a character under conju-
gation is reflected by the fact that its diagram is closed to the top. Note that the constant
function with value 1 is the character for the trivial representation.

Evaluating a representative function on a product of group elements yields the expansion

(φ ⊗ v)(g1 · · · gk) =
∑

n1,...,nk−1

(φ ⊗ vn1)(g1)(φn1 ⊗ vn2)(g2) · · · (φnk−1 ⊗ v)(gk).(3.7)

Diagrammatically this expansion is the insertion of coevaluation diagrams (seeFig. 3.1e).

3.1.3. Integration and semisimplicity
If all finite-dimensional representations ofG are completely reducible the categoryR(G)

is semisimple and a normalized bi-invariant integral in the following sense exists.

Definition 3.2. A normalized bi-invariant integral onCalg(G) is a map
∫

: Calg(G) → C

denotedf �→ ∫
dg f(g) such that∫

dg f(gh) =
∫

dg f(hg) =
∫

dg f(g) ∀h ∈ G and
∫

dg = 1.



R. Oeckl / Journal of Geometry and Physics 46 (2003) 308–354 323

Fig. 3.2. Diagrammatic identity for the integral.

Furthermore, this integral precisely defines the family of morphismsT of Proposition
2.12in the following way.

Proposition 3.3. For a representation V the intertwinerTV : V → V of Proposition 2.12
is given by the bi-invariant normalized integral as

TV : v �→
∫

dg ρV (g)v.

Thus, the integral of a representative function is∫
dg〈φ, ρV (g)v〉 = 〈φ, TV (v)〉. (3.8)

Translating this formula into a diagram yields the identity shown inFig. 3.2. By combining
this with Fig. 3.1c we obtainFig. 3.3 as the diagrammatic representation of taking the
integral of a product of functions.

Two types of groups giving rise to semisimple representation categories are of particular
interest: compact Lie groups and finite groups.

Proposition 3.4 (Peter–Weyl decomposition).Let G be a compact Lie group or a finite
group. Then, R(G) is semisimple and the algebra of representative functions on G has a
decomposition

Calg(G) ∼= ⊕
V
(V ∗ ⊗ V),

where the direct sum runs over all irreducible representations V of G. The isomorphism is
an isomorphism as representations ofG×G with the action((g, g′) � f)(h) = f(g−1hg′)
on the left hand side and the canonical action on the right hand side.

Fig. 3.3. The integral of a product of functions.
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The unique normalized bi-invariant integral
∫

: Calg(G) → C is given by the projection

⊕
V
(V ∗ ⊗ V) → 1∗ ⊗ 1 ∼= C,

where1 denotes the trivial representation.
In the Lie group case the representative functions are dense in theL2-functions of G, to

which the integral(Haar measure) extends.
In the finite group case the integral can be expressed through a sum∫

dg f(g) = 1

|G|
∑
g∈G

f(g),

where|G| denotes the order of G.

3.2. Hopf algebras and quantum groups

Hopf algebras can be considered as generalizations of groups in the sense that they are
“noncommutative algebras of functions”. Hence the namequantum groups. The coproduct
thereby encodes the “group structure”. We consider Hopf algebras with various amounts of
additional structure so that their respective representation theory gives rise to all the different
types of categories we are interested in here. See[25] for a general reference covering most
of the relevant cases. Spherical Hopf algebras are considered in[20].

We use here the point of view that representations are comodules. This is precisely in the
spirit of “noncommutative function algebras” and indeed, as we shall see below, a group
is then just (equivalent to) a certain Hopf algebra. This is also the right point of view
for supergroups (see, e.g.[26]). Examples of Hopf algebras giving rise to nonsymmetric
categories are then theq-deformations of simple Lie groups. Dually, one can consider
modules as representations. This corresponds then to Hopf algebras generalizing universal
enveloping algebras. However, this implies the loss of “global structure” of the group. But
as this point of view is more frequently employed in the literature, many of our definitions
have a “co” in them. In the case of finite-dimensional Hopf algebras both points of view are
completely equivalent.

We use the notation%, ε,S for coproduct, counit and antipode of a Hopf algebra. We
use Sweedler’s notation (with implicit summation)%a = a(1) ⊗ a(2) for coproducts and a
similar notationv �→ v(1) ⊗ v(2) for right coactions.

3.2.1. Representation categories

Definition 3.5. Let H be a Hopf algebra andω : H → C a convolution-invertible map
such that

ω(ab) = ω(a)ω(b), S2a = ω(a(1))a(2)ω
−1(a(3))

for all a, b ∈ H . We call(H, ω) acopivotal Hopf algebra.



R. Oeckl / Journal of Geometry and Physics 46 (2003) 308–354 325

Definition 3.6. Let (H, ω) be a copivotal Hopf algebra. It is called acospherical Hopf
algebraif for all right H-comodulesβ : V → V ⊗ H and all comodule mapsθ : V → V

the equality

tr((idV ⊗ ω) ◦ β ◦ θ) = tr((idV ⊗ ω−1) ◦ β ◦ θ)
holds.

Definition 3.7. A coquasitriangular structureon a Hopf algebraH is a convolution-invertible
mapR : H ⊗H → C so that

R(ab⊗ c) = R(a⊗ c(1))R(b⊗ c(2)), R(a⊗ bc) = R(a(1) ⊗ c)R(a(2) ⊗ b),

b(1)a(1)R(a(2) ⊗ b(2)) = R(a(1) ⊗ b(1))a(2)b(2)

for all a, b, c ∈ H . A pair (H,R) is called acoquasitriangular Hopf algebra.

Definition 3.8. A ribbon formon a coquasitriangular Hopf algebra(H,R) is a mapν :
H → C such that

ν(ab) = R−1(a(1) ⊗ b(1))R
−1(b(2) ⊗ a(2))ν(a(3))ν(b(3)),

ν(1) = 1, ν(Sa) = ν(a), ν(a(1))a(2) = a(1)ν(a(2))

for all a, b ∈ H . A triple (H,R, ν) is called acoribbon Hopf algebra.

Lemma 3.9. A coribbon Hopf algebra is a cospherical Hopf algebra by settingω(v) :=
R−1(Sv(1) ⊗ v(2))ν(v(3)).

Definition 3.10. A cotriangular structureon a Hopf algebraH is coquasitriangular struc-
ture satisfying the extra property

R(a⊗ b) = R−1(b⊗ a)

for all a, b ∈ H . A pair (H,R) is called acotriangular Hopf algebra.

Lemma 3.11. A cotriangular Hopf algebra is a coribbon Hopf algebra by choosingν := ε.

Proposition 3.12. The categoryMH of finite-dimensional(right) comodules of a Hopf
algebra H is a rigid monoidal category in the following way:

• The monoidal structure is given by the tensor product of comodules. Thus, for two co-
modules V, W we have a comodule structure onV ⊗W via

v⊗ w �→ v(1) ⊗ w(1) ⊗ v(2)w(2).

The unit object1 is the one-dimensional trivial comodulev �→ v⊗ 1.
• The rigid structure is given by the definition of the dualV ∗ of a comodule V. This is the

dual vector space with the coaction

f �→ f(1) ⊗ f(2) such that〈f(1), v〉f(2) = 〈f, v(1)〉Sv(2)
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for all v ∈ V, f ∈ V ∗. evV is simply the pairing betweenV ∗ and V whilecoevV : 1 �→∑
i vi ⊗ f i where{vi} is some basis of V and{f i} the corresponding dual basis ofV ∗.

• If H is copivotal/cospherical, thenMH is a pivotal/spherical category by definingτV :
V → V ∗∗ for an object V as

τV : v �→ v(1)ω(v(2)),

where V andV ∗∗ are identified canonically as vector spaces and the coaction is the one
on V.

• If H is coribbon, thenMH is a ribbon category with braiding

ψV,W(v⊗ w) = w(1) ⊗ v(1)R(v(2) ⊗ w(2))

and twist

νV : v �→ v(1)ν(v(2)).

• If H is cotriangular, then the category is symmetric with the braiding obtained as

ψV,W(v⊗ w) = w(1) ⊗ v(1)R(v(2) ⊗ w(2)).

To see how the group case is manifestly a special case of the cotriangular Hopf algebra
case note the following fact.

Proposition 3.13. Let G be a group. ThenCalg(G) is naturally a commutative Hopf algebra.
The coproduct is given by the map

V ∗ ⊗ V → (V ∗ ⊗ V)⊗ (V ∗ ⊗ V) : φ ⊗ v �→
∑
n

(φ ⊗ vn)⊗ (φn ⊗ v)

and the antipode is given byV ∗ ⊗ V → V ⊗ V ∗ : φ ⊗ v �→ v⊗ φ, using that canonically
V ∗∗ ∼= V as representations.

Furthermore, a finite-dimensional representation of G is canonically the same thing as
a finite-dimensional comodule ofCalg(G) and vice versa by the coaction

V → V ⊗ (V ∗ ⊗ V) : v �→
∑
n

vn ⊗ (φn ⊗ v).

If Calg(G) is equipped with the trivial cotriangular structureR = ε ⊗ ε, then(H,R) can
be said to correspond to G in the sense thatMH is identical toR(G).

The natural definition of a supergroup in view of the above proposition is that ofZ2-graded
commutative Hopf algebra. The elements of the Hopf algebra play the role now of “functions
on the supergroup”. AZ2-graded Hopf algebra satisfies the same axioms as a Hopf algebra,
except for the compatibility of product and coproduct which is modified to

%(ab) = (−1)|a(2)||b(1)|a(1)b(1) ⊗ a(2)b(2). (3.9)

Z2-graded commutativity means thenab = (−1)|a||b|ba. To aZ2-graded commutative Hopf
algebra corresponds precisely a cotriangular Hopf algebra which is obtained from the former
one by “bosonization” and has exactly the same representation theory[25].
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However, the cotriangular Hopf algebra point of view is more general and superior from a
physical point of view as it allows the algebraic implementation of spin-statistics relations.
In particular, this is relevant for the formulation of supersymmetric theories. The convenient
definition of supergroup in our context is thus that of a cotriangular Hopf algebraH equipped
with a surjection to the Hopf algebra of functions onZ2 with nontrivial braiding (see
[26] for details). The cotriangular structure encodes theZ2-grading on the representations
(comodules) as

ψV,W(v⊗ w) = (−1)|v||w|w⊗ v. (3.10)

3.2.2. Representative functions
We now consider how elements of a Hopf algebra can be dealt with in a similar manner

as representative functions on a group.
LetH be a Hopf algebra. For a finite-dimensional vector spaceV the spaceV ∗ ⊗ V has

canonically the structure of a coalgebra by the coaction

%φ ⊗ v =
∑
n

(φ ⊗ vn)⊗ (φn ⊗ v) and counitε(φ ⊗ v) = 〈φ, v〉. (3.11)

Given a finite-dimensional comoduleV of H we obtain a map of coalgebrasV ∗ ⊗V → H

via

φ ⊗ v �→ 〈φ, v(1)〉v(2). (3.12)

In fact, any element ofH is in the image of such a map. To see this, considerH as a
right comodule under itself by the coproduct. Any givenh ∈ H is contained in some
finite-dimensional subcomoduleV ⊆ H . Chooseφ ∈ V ∗ such thatφ(v) = ε(v) for any
v ∈ V . Then,φ ⊗ h �→ h under the above map.

Therefore, similarly to the group case, we can represent elements ofH by double line
diagrams. The coaction ofH on itself implicit in this notation is now the right adjoint
coactionh �→ h(2) ⊗ (Sh(1))h(3). The diagram for the counit is just the evaluation. The
diagram for the coproduct is obtained by inserting coevaluations as follows from(3.11).
To make the analogy with the group case complete, we can define a character by the
(arrow-reversed) coevaluation diagram. We obtain then exactly the diagrams (a), (b), (d)
and (e) ofFig. 3.1. Note that the counit expresses evaluation at the identity while the
coproduct expresses evaluation on a product of group elements in the group case.

3.2.3. Integration and semisimplicity
Proceeding in an analogous way as for groups, we introduce in the semisimple case the

integral which defines theT -morphism and its diagrammatic representation.

Definition 3.14. Let H be a Hopf algebra. A bi-invariant normalized integral onH is a
map

∫
: H → C such that

h(1)

∫
h(2) =

(∫
h(1)

)
h(2) = 1

∫
h ∀h ∈ H and

∫
1 = 1.

Note in particular thatDefinition 3.2 is the special case ofDefinition 3.14for H =
Calg(G).
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Proposition 3.15. For an object V the intertwinerTV : V → V of Proposition 2.12is given
by the bi-invariant normalized integral as

TV : v �→ v(1)

∫
v(2).

Note that in the double line diagrammatics considered above we obtain the identity of
Fig. 3.2as from(3.12)we have∫

(φ ⊗ v) �→ 〈φ, v(1)〉
∫
v(2) = 〈φ, TV (v)〉. (3.13)

The generalization of a compact Lie group or finite group is a cosemisimple Hopf algebra.
That is, a Hopf algebra which is as a coalgebra a direct sum of simple coalgebras. The
structure of cosemisimple Hopf algebras is captured by the following proposition.

Proposition 3.16 (Peter–Weyl decomposition).Let H be a cosemisimple Hopf algebra.
ThenMH is semisimple and the following isomorphism of coalgebras holds

H ∼= ⊕
V
(V ∗ ⊗ V),

where the direct sum runs over all simple(right) comodules V of H. V ∗ ⊗ V is a simple
coalgebra as above with the isomorphism as given there.

The unique normalized left and right invariant integral
∫

: H → C is given by the
projection

⊕V (V
∗ ⊗ V) → 1∗ ⊗ 1 ∼= C,

where1 denotes the trivial comodule.

4. The partition function

We start by fixing some terminology. In the following,complexmeans finite CW-complex
(see, e.g.[27]). A lattice means a finite combinatorial 2-complex. For a lattice we use the
termsvertex, edge, faceto denote 0-, 1-, and 2-cells, respectively. We use the termcellular
manifoldto denote a compact manifold together with a cellular decomposition as a finite
CW-complex. Thelattice associated with a cellular manifoldmeans the 2-skeleton of the
dual complex. A standard reference for LGT is[28].

4.1. Ordinary and symmetric LGT

It is well known that LGT admits a spin foam formulation[2]. In [3] the corresponding
transformation was explicitly performed on a hypercubic lattice and it was shown that the
new formulation is strong–weak dual to the original one. We perform here a generalization
of this transformation employing the categorial and diagrammatic language introduced in
the previous sections. This allows us to generalize LGT to arbitrary semisimple symmetric
categories (e.g., including supersymmetric LGT).
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Let L be a lattice andG a compact Lie group or finite group. We might think ofL as
arising as the lattice associated with a cellular manifoldM. We equip the faces ofL with
arbitrary but fixed orientations. Recall that in LGT a group elementg is attached to every
edge (with a given orientation). The actionS is the sum over all facesf of a functionσ
evaluated on the product of group elements attached to the edgese bounding the facef
(cyclically ordered by the orientation of the face). We write this as

S =
∑
f

σ

∏
e∈∂f

ge

 . (4.1)

The functionσ is required to be invariant under conjugation(3.4)and to satisfyσ(g−1) =
σ(g). The conjugation invariance ensures that it does not matter at which vertex we start
taking the product over group elements, only the cyclic order is relevant. The partition
function reads

Z =
∫ (∏

e

dge

)
e−S =

∫ (∏
e

dge

)∏
f

e−σ(∏e∈∂f ge). (4.2)

As e−σ is itself invariant under conjugation it can be expanded as

e−σ =
∑
V

αVχV , (4.3)

where the sum runs over the irreducible representationsV of G andχV is the character of
the representationV . Since e−σ(g−1) = e−σ(g) we haveαV ∗ = αV because ofχV (g−1) =
χV ∗(g). Thus

Z =
∫ (∏

e

dge

)∏
f

∑
V

αVχV

∏
e∈f

ge

 =
∑
Vf

∏
f

αVf

ZVf (4.4)

with

ZVf :=
∫ (∏

e

dge

)∏
f

χVf

∏
e∈f

ge

 , (4.5)

whereVf denotes an assignment of an irreducible representationV to every facef and we
sum over all such assignments.

The next step is to expand the characters into functions (i.e., matrix elements) taking
as values the individual group elements attached to the edges. Then, for each edge all the
functions taking the attached group element as their value are multiplied and integrated.
Instead of proceeding formally we perform these manipulations diagrammatically. This
leads to a diagrammatic representation of the partition function. The obtained diagram is
naturally embedded into the lattice and into the manifold (if the lattice arises from one).

To represent functions on the group diagrammatically we utilize the diagrammatic lan-
guage introduced in the previous sections. Notably, we consider an action of the gauge
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Fig. 4.1. The diagram of a character evaluated on a product of group elements.

group by conjugation(3.4). As we shall discuss inSection 5.1this precisely encodes gauge
transformations.

As introduced inSection 3.1.2a characterχV is represented by a coevaluation diagram
(Fig. 3.1d) due to its decomposition(3.6)as basis and dual basis over the representationV .
Thus, from(4.5)we obtain one such diagram for each face. As each character is evaluated
on the product of group elements attached to the edges bounding the face, we expand it into
functions of the individual group elements. This means attaching the diagram ofFig. 3.1e to
each character diagram. We obtain a diagram as shown inFig. 4.1for every face whereby the
double lines correspond to the edges bounding the face. Thus, we can embed the diagram for
each face into the face as shown inFig. 4.2. The direction of the arrows is chosen in corre-
spondence to the orientation of the face. Proceeding in this way for each face, all double lines
denoting functions that take the group value for a given edge meet in this edge (seeFig. 4.3).

To integrate the product of functions taking their value at a given edge as prescribed
by (4.5) we insert the appropriate diagram (Fig. 3.3) at each edge, connecting the double
lines. For ease of notation, we now draw the lines in each face such that they run close to
the boundary. We draw theT -projections (the unlabeled coupon inFig. 3.3) arising in the
integration as (hyper)-cylinders with axis given by the edges. Proceeding thus for every
edge we arrive at a diagram embedded in the lattice as shown inFig. 4.4.

As this diagram is closed it represents an intertwiner1 → 1 and thus a complex number
which is exactlyZVf in (4.5). Thus, the partition function is the sum over this diagram with
all possible assignments of irreducible representations to the faces with weights given by
theαV . Note that this is independent of the choice of orientations for the faces. Indeed,
changing the orientation of a face leads to the same partition function, except thatαV and
αV ∗ for this face are interchanged. However, they are equal by assumption.

Since the diagram resembles an arrangement of wires and cables we denote the lines
representing the characters aswiresand the (hyper)-cylinders representing theT -projectors

Fig. 4.2. The diagram of a character embedded into a face.
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Fig. 4.3. The character diagrams embedded into a three-dimensional cubic lattice. In this example four double
lines meet at each edge.

ascables. When referring to an individual wire we usually mean all the lines lying in a
given face as they come from the same character. They carry the same representation label
and arrow orientation and we can imagine them being connected inside the cables.

Let us remark that the arrows on the wires in a given cable do not necessarily all point
in the same direction (as inFig. 3.3). This indeed must be so as those functions originating
from faces with opposite orientation with respect to the one in which the edge carries the
group valueg are evaluated atg−1 instead. The relative directions of the arrows encode this
information.

Starting from the lattice the diagram is obtained in a very simple way. Put one wire
into each face running close to the boundary. Give each wire an arrow according to the
orientation of the face and the representation label of the face. Then, for each edge, put a
cable in the middle of the edge, around the wires that run along the edge. We refer to the

Fig. 4.4. The circuit diagram obtained after inserting the integrals. This example shows wires (thick lines) and
cables (gray cylinders) in a piece of three-dimensional cubic lattice. The arrows on the wires are omitted.
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diagram as thecircuit diagramassociated to the lattice. Note that it is a spin network in the
sense ofSection 2.2.

Strictly speaking, we have inSection 2.2only defined how to evaluate a diagram that
can be written on a “piece of paper”, i.e., in the plane. However, as discussed there, the
value of the diagram only depends on the combinatorial data, i.e., which piece of wire
is connected to which side of which cable and with which arrow. This information is
completely determined by the lattice. Any way of writing the diagram on a piece of paper
(we refer to this asprojection) will give the same result.

Changing our point of view, we can now consider the obtained representation of the
partition function as a definition and thereby extend it to arbitrary semisimple symmetric
categories.

Definition 4.1. Let C be a semisimple symmetric category. Let{αV } be an assignment of a
complex number to each isomorphism class of simple objectV such thatαV ∗ = αV . These
are calledweights. LetL be a lattice, possibly associated with a cellular manifoldM. This
defines anLGT as follows.

For any choice of orientation and labelingVf with an equivalence class of simple objects
for each face we defineZVf to be the value of the circuit diagram constructed above. We call

Z :=
∑
Vf

∏
f

αVf

ZVf
thepartition function, where the sum runs over all possible labelings. This does not depend
on the chosen orientations of the faces.

By the above derivation, this definition agrees with ordinary LGT in the case whereC =
R(G). Note that asZVf is finite by construction,Z is manifestly finite ifC has only finitely
many isomorphism classes of simple objects. However, it might be infinite in general. In
ordinary LGT it is finite by construction in spite of the sum over labelings being infinite for
a Lie group.

4.2. Nonsymmetric LGT

In the present section we extend our definition of LGT to nonsymmetric categories. This
turns out to require topological information beyond the lattice. That is, we need to start
with a cellular manifold and the admissible type of nonsymmetric category depends on the
dimension of the manifold. Also the manifold is now required to be orientable. The type
of category admissible is the same as for state sum invariants of Turaev–Viro type, namely
spherical in three dimensions[15] and ribbon in four dimensions[17]. This is not surprising
as these invariants arise indeed as special cases of our construction. This will be discussed
in Section 8.2. In two dimensions we can use pivotal categories.

That the circuit diagram constructed in the previous section cannot alone be used to define
a partition function is clear. For pivotal, spherical and ribbon categories the value of the
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diagram depends on the way it is projected onto the plane and not just on its combinatorial
data. This extra data is extracted from topological information about the cellular manifold.

Let M be an oriented cellular 2-manifold and consider its circuit diagram. The only
obstruction to its direct evaluation is the non-planar topology ofM. Instead, we cut out
all the 2-cells (with the wire pieces) and project them separately onto the plane, using
the orientation ofM. This cuts all the cables in half. Now, we reconnect the cables with
T -coupons, thereby possibly introducing crossings. The “layout” for theseT -coupons is
irrelevant, however, as they can arbitrarily cross (Fig. 2.7) and “twist” (Fig. 2.8). Thus, we
obtain a well-defined morphism1 → 1 (which is a complex number) in the pivotal category.

The situation in higher dimensions is more involved and we start by outlining the
n-dimensional setting before specializing ton = 3 and 4.

Let M be an oriented cellular manifold of dimensionn andL the associated lattice,
embedded intoM. The key idea is to embed the circuit diagram into then− 1-dimensional
subcomplex ofM. Again we choose an arbitrary orientation for each face (or equivalently
(n− 2)-cell).

Instead of embedding the wires arbitrarily into the faces of the lattice we put them on
the intersections of these faces with the(n− 1)-cells. Thus, every(n− 1)-cell carries two
pieces of wire for each face that it intersects. The two correspond to the two (not necessarily
distinct)n-cells that are bounded by the(n − 1)-cell and they lie on top of each other. (It
might be helpful to imagine the wires to be slightly displaced into the respectiven-cells.)
Each piece of wire carries the object label and direction inherited from the face. The wire
pieces end precisely at the intersections of the(n − 1)-cells with the edges. Now we put
a “small” (n − 2)-sphere around each intersection of an(n − 1)-cell with an edge, into
the(n− 1)-cell. We let the wire pieces end on those(n− 2)-spheres instead of the edges.
The(n − 1)-balls bounded by these(n − 2)-spheres are to be thought of as the (infinitely
shortened) cables (seeFig. 4.5for an illustration).

By definition of a CW-complex, we can think of the boundary of ann-cell always as an
(n− 1)-sphere with some of its constituent(n− 1)-cells possibly identified. It is natural to
consider this(n− 1)-sphere (before identification) as carrying the wire pieces belonging to
then-cell. The idea for evaluating the circuit diagram is now to “cut out” the(n−1)-sphere
for eachn-cell with its wire pieces and to project it onto the plane to define (almost)
a morphism (upon labeling) (seeFig. 4.6). Note that each(n − 1)-cell occurs twice in
the projections, once for then-cell that it bounds on each side. (Thesen-cells might be

Fig. 4.5. The circuit diagram embedded into the(n − 1)-complex. The thin lines are the(n − 1)-cells. The gray
boxes are the cables. The thick lines are the wires, for illustration slightly displaced from the boundaries into the
n-cells. The face dual to the(n− 2)-cell at the meeting point in the center is indicated by a dashed line.



334 R. Oeckl / Journal of Geometry and Physics 46 (2003) 308–354

Fig. 4.6. The projection of the boundary of ann-cell with wires and cables. The wire pieces end on the boundaries
of the cables ((n− 1)-balls) which are shaded.

Fig. 4.7. Two projected(n − 1)-spheres containing the same(n − 1)-cell. The projections of this(n − 1)-cell
(indicated by the dashed line) are mirror images.

identical leading to the(n−1)-cell appearing twice in one projected(n−1)-sphere.) Using
the orientation in performing the projections the two occurrences of each(n−1)-cell agree
in the sense of being mirror images (seeFig. 4.7). Then one reconnects all the individual
diagrams at the matching (mirror image) cable ends withT -coupons (seeFig. 4.8). We call
this theprojected circuit diagramwhich (upon labeling) gives rise to a morphism1 → 1
in the relevant category and thus a complex number.

Our description already suggests that the admissible type of category depends on the
isotopy properties of the diagrammatics. More precisely, we should have isotopy invariance
on Sn−1, as this is where the (unconnected) diagrams live. Indeed, this approach can be
realized in dimension 3 for spherical categories and in dimension 4 for ribbon categories
(compareTable 1). We describe this in the following.

Fig. 4.8. Reconnecting the cable ends (gray disks) by aT -coupon.
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4.2.1. Dimension 3—spherical categories
Before projecting, we mark each of the circles that represent the cables at some arbitrary

point (not coinciding with the end of a wire piece). Then, to perform the projections, each
2-sphere (bounding a 2-cell) is punctured at some arbitrary point (which does not lie in any
of the circles or on any of the wire pieces). Now, each 2-sphere is flattened out and projected
onto the plane such that its outside is facing up. In doing so we respect the orientation of
M. This ensures that the orientations of the projected 2-spheres all match up in the sense
that the two projections of each 2-cell are mirror images. We wish to think of the images of
the 2-spheres as diagrams defining (upon labeling with objects) morphisms in the category.
For each projected cable end (represented by a circle) we arrange the wires ending there in
a line by cutting the circle at the marked point. Now if we could pull these lines to the top or
bottom line of the diagram this would (upon labeling) specify a morphism. As this would
possibly imply introducing crossings this is not in general possible. Nevertheless, we can
connect the corresponding wires lined up at the cable ends byT -coupons. This is because
T -coupons are allowed to cross arbitrarily. The emerging diagram is the desired projected
circuit diagram. It defines (upon labeling) a morphism1 → 1 in the spherical category and
thus a complex number.

We proceed to show the well definedness (invariance under the choices made) of the
obtained morphism (for any labeling). For given projections, the morphism is independent
on the way theT -coupons are inserted to connect matching cable ends. This is because the
T -coupons can cross arbitrarily (Fig. 2.7) and “windings” in the connections are irrelevant
(Fig. 2.8). The invariance of the morphism under the way the projections of the 2-spheres
are performed (while respecting the orientation) follows precisely from theS2 isotopy
invariance of the diagrammatics. Notably, the invariance under the choice of point at which
each boundary 2-sphere is pierced is precisely the identity ofFig. 2.3. Note that a diagram
that is bounded only by cables behaves in this sense like a closed diagram. It remains to
show the invariance under the choice of marked point for each cable. Moving this point
across the end of a wire gives precisely rise to diagrams that are related as the sides of
Fig. 2.10. As these are identical invariance follows.

4.2.2. Dimension 4—ribbon categories
We start by turning the wires into ribbons, i.e., equip them with a framing. As we confine

the framing to the boundary 3-spheres in which the wires lie this gives indeed rise to ribbons
(again inside the 3-spheres). It turns out that one is free to choose the framing as long as it is
coherent in the following way. Recall that the wire pieces all occur in pairs (each belonging
to one of the two bounded 4-cells) which lie on top of each other. A framing is said to be
coherent, if for each piece of wire the corresponding piece of wire has exactly the same
framing, but face-side and backside exchanged. Next, we arrange the ribbon wire endings
on each of the 2-sphere cables in a line, with the framings pointing along the line, all faces
(for each bounded 4-cell) on the same side. We do this while keeping corresponding wire
pieces identified (except for their face-side and backside being opposite).

Now, we puncture each of the bounding 3-spheres at a point to identify them withR3.
Hereby we respect the orientation and choose the “outward” direction for all the 3-spheres
to be the same in the ambientR4 (considering theR3 as a subspace of this). (This is the
analog to projecting 2-spheres “face up” in the three-dimensional case.) Then, for each
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Fig. 4.9. Pulling a twist through aT -coupon.

3-sphere we project the obtained ribbon tangle inR3 onto the plane. We do this in such
a way that the aligned ribbons that end on the 2-spheres (cables) are projected “face up”.
To let the projections define morphisms (upon labeling) we would need to pull the ribbon
ends to the top or bottom line of each diagram. However, we do not need to do that but can
proceed to connect the corresponding ribbon ends withT -coupons. The resulting diagram
is the desired projected circuit diagram. It defines (upon labeling) a morphism1 → 1 in
the category and thus a complex number.

We proceed to show the well definedness (invariance under the choices made) of the
obtained morphism (for any labeling). For given projections, the morphism is independent
on the way theT -coupons are inserted to connect matching cable ends. This is because the
T -coupons can cross arbitrarily (Fig. 2.6g) and “windings” in the connections are irrelevant
(Fig. 2.6h). The invariance of the morphism under the way the projections of the 3-spheres
are performed (while respecting the orientation) follows precisely from theS3 (orR3 which
is the same) isotopy invariance of the diagrammatics. For the invariance under the choice of
framing we note that a change in the framing for a given piece of wire induces by construction
a corresponding change in the corresponding piece of wire. These give rise to additional
twists in the projections of this wire piece which appear as mirror images on both sides of
the relevantT -coupon. As theT -coupon commutes with any morphism the twists can be
pulled “through” to the same side of theT -coupon where they “annihilate” each other (see
Fig. 4.9). It remains to show the invariance under the choice of alignment of ribbons for each
cable. Any such alignment can be obtained from a given one by inserting an isotopy in a
neighborhood of the 2-sphere (cable). In the projections this amounts to inserting a diagram
consisting of crossings and twists. This diagram is inserted on both sides of theT -coupon
with one being the mirror image of the other. However, as we can pull any morphism (such
as the inserted diagram) through aT -coupon, the two mirror images annihilate each other,
leaving the total diagram invariant.

4.2.3. Definition of the partition function
We proceed to give the formal definition of LGT for the considered nonsymmetric settings

analogous toDefinition 4.1.

Definition 4.2. LetC be a semisimple pivotal category andn = 2 or a semisimple spherical
category andn = 3 or a semisimple ribbon category andn = 4. Let{αV } be an assignment
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of a complex number to each isomorphism class of simple objectV such thatαV ∗ = αV .
These are calledweights. Let M be an oriented cellular manifold of dimensionn. This
defines anLGT as follows.

For any choice of orientation and labelingVf with an equivalence class of simple objects
for each(n − 2)-cell f we defineZVf to be the value of the projected circuit diagram
constructed above. We call

Z :=
∑
Vf

∏
f

αVf

ZVf
thepartition function, where the sum runs over all possible labelings. This does not depend
on the chosen orientations of the(n− 2)-cells.

The independence ofZ on the chosen orientations follows in the same way as in the
symmetric case. This is now due toLemma 2.4. In the two-dimensional case it would also
make sense to induce the orientations of the faces from the orientation ofM. Then we can
drop the conditionαV = αV ∗ , makingZ possibly dependent on the orientation ofM.

5. Gauge symmetry and gauge fixing

In this section we consider how the gauge invariance of LGT manifests itself in the
diagrammatic formulation. Then we show how the notion of gauge fixing in conventional
LGT translates into the diagrammatic language and generalizes to the symmetric, pivotal,
spherical and ribbon settings. Furthermore, it turns out to be related to a topological move
between cellular decompositions which is thus an invariance of the partition function.

5.1. Gauge symmetry

Recall that in conventional LGT a gauge transformation is defined by assigning a group
elementgv to each vertexv. This changes a configuration (i.e., an assignment of group
elements to edges) as follows. For a given edgee the assigned group elementh is replaced
by gv1hg−1

v2
wherev1 and v2 are the vertices boundinge. The order of the vertices is

determined by the orientation ofe.
Consider the LGT action(4.1). The effect of a gauge transformation on the functionσ

(and thus for the characters in the expansion of its exponential) is precisely an action of the
group by conjugation(3.4). Namely,σ is conjugated by the group element assigned by the
gauge transformation to the vertex which forms the starting point for the product over group
elements which is the argument ofσ. Conjugation invariance ofσ implies gauge invariance.

In the diagrammatic formulation the gauge invariance is much more implicit. The fact
that the diagrams represent intertwiners means that we have an underlying action of the
gauge group “everywhere”. The fact that a diagram is closed implies invariance. However,
we can still specifically identify the original gauge invariance.

For simplicity we consider a gauge transformation that is nontrivial only at one vertex.
Deform the (two-dimensionally projected) diagram that defines the partition function such
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Fig. 5.1. Gauge symmetry at a vertex. Acting with the group at the cut (dashed line) is equivalent to a gauge
transformation.

that the considered vertex is at the top with all attached cables leading downward to the
remaining diagram (seeFig. 5.1). Then we introduce a horizontal cut in the diagram, just
on top of the cables (dashed line). As the diagram above the cut is closed to the top it is
invariant. Thus, we can act with a group elementg on the tensor product of representations
that is represented by the wires crossing the dashed line without changing the value of the
diagram. This action is simply an action withg on each tensor factor. As the wire pieces
represent functions on the group obtained from the expansion of the characters, the action
with g corresponds to an insertion ofg into the evaluation of the function. Each piece of
wire crosses the dotted line twice corresponding to an insertion ofg for each of the two
edges connected by the piece of wire. However, the orientation in both cases is opposite
(including the arrow, it points upwards at one crossing and downwards at the other). Thus,
it corresponds to insertingg on one side andg−1 on the other. We recover an ordinary gauge
transformation.

So far we have only talked about the case of ordinary group symmetries as only in that
case gauge transformations can be defined in the conventional way. However, the statement
of gauge symmetry can more generally be considered to lie in the fact that we have a
diagrammatic formulation of the partition function. As a diagram determines a morphism
in the relevant category it is covariant by construction. This covariance is with respect to a
group, a supergroup or a quantum group (Hopf algebra) if the category arises as the category
of representations of the respective object.

5.2. Gauge fixing

As we know from conventional LGT we can use its gauge symmetry to remove some of
the group integrals in the partition function(4.2). The corresponding group variables can be
set to the unit element. We are allowed to do this for the group variables of as many edges
as we like, as long as these do not form any closed loop[29].

How is this “gauge fixing” expressed diagrammatically? Looking back at expression(3.8)
we see that removing the integral means applying the evaluation without theT -projector.
Diagrammatically, the projector diagram is simply removed, i.e., replaced by the identity.
In the circuit diagram this means that we can remove cables by exposing the wires without
changing the value of the diagram. Conventional LGT tells us that we are allowed to do
this as long as the edges for which the attached cables have been removed do not form any
closed loop.
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Fig. 5.2. Multiple composition property ofT .

As the gauge invariance is contained in the diagrammatic formulation we should be able
to derive the gauge fixing directly diagrammatically—without recurrence to conventional
LGT. This is indeed the case, as we will show by exploiting the properties of theT -projector
(Proposition 2.12andFig. 2.6). This generalizes gauge fixing of conventional LGT from
the group context to the general symmetric setting as well as to the pivotal, spherical and
ribbon settings in the relevant dimensions. We start by deriving the identity that enables the
gauge fixing on the purely diagrammatic level. In the ribbon case we assume blackboard
framing.

Let us first observe the additional property ofT depicted inFig. 5.2. A tensor product
of T -projectors is equal to this same tensor product composed with an overallT -projector.
This follows straightforwardly by multiple application of properties (c) and (e) ofFig. 2.6.

Consider now a diagram withT -coupons (which might arise as the projection of a circuit
diagram). Draw a closed loop that only intersectsT -coupons. By moving theT -coupons
around we arrive at a diagram as shown inFig. 5.3on the left hand side (for the case of
four cables with two wires each). The loop is represented by the dashed line. The part of the
diagram between theT -coupons lies inside the dashed box and is indicated by three dots.
The rest of the diagram is attached at the top and bottom and lies outside the dashed box.

Now consider the dotted box. Whatever lies inside defines a morphism by construction.
Thus, we can apply property (d) ofProposition 2.12(seeFig. 2.6) to theT -coupon at the

Fig. 5.3. Diagrammatic gauge fixing identity.
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top and this morphism. That is to say we can exchange the two. The result is shown in the
diagram in the middle ofFig. 5.3. Now, the arrangement of theT -coupons at the bottom
resembles the right hand side ofFig. 5.2. That is, we can apply the identity of this figure to
arrive at the right hand side diagram ofFig. 5.3. The result of the operation is simply the
disappearance of theT -coupon that was originally at the top.

5.3. n-Cell fusion invariance

It turns out that gauge fixing is much more than an identity that helps us to simplify
diagrams. Assume we are given a diagram that arises as the projection of a circuit diagram
for a cellular manifold. Assume further that we obtain a new diagram from the given one by
applying a gauge fixing identity (as inFig. 5.3). Remarkably, it turns out that the new diagram
is still a projection of the circuit diagram for the same manifold—but with different cellular
decomposition. The process that transforms one cellular decomposition into the other is
given by the following definition.

Definition 5.1. LetM be a manifold of dimensionn with cellular decompositionK. Letµ
be an(n−1)-cell inKwhich bounds two distinctn-cellsσ, σ′. Removingµ, σ andσ′ from
K while adding the newn-cell σ′′ := σ ∪ µ ∪ σ′ leads to a new cellular decompositionK′
of M. We call this process then-cell fusion move.

As a consequence the partition function remains invariant under this move. To proof our
claim let us first consider what then-cell fusion move means for the circuit diagram. In
the context ofDefinition 5.1, the(n − 1)-cell µ corresponds to an edge of the associated
lattice and thus a cable of the circuit diagram which is removed. The wires remain exactly
the same however as they correspond to faces and thus(n−2)-cells which are not changed.
That is, the cellular decompositionsK andK′ have identical circuit diagrams except that in
the one forK′ a cable is removed, exposing the wires.

We need to verify that the projections of the circuit diagram are related by a gauge fixing
identity as depicted inFig. 5.3. First, identify the projection of the circuit diagram forK
with the left hand side diagram ofFig. 5.3as follows.σ is projected to the interior of the
dashed box,µ to the top part of the dashed line andσ′ above it. The dashed line intersects
only cables as it is the projection of the boundary ofσ. Thus, the diagrammatic identity can
be applied which corresponds to removing the cable that “pierces”µ, as required.

What remains to check is that the diagram obtained by first projecting the circuit diagram
and then applying the diagrammatic identity is equivalent to the diagram obtained by first
applying the move (changing the circuit diagram) and then projecting. This is obvious if any
kind of projection (preserving the combinatorics) is allowed, as for symmetric categories.
It is equally obvious in the two-dimensional pivotal case. It is less obvious though for the
spherical (three-dimensional) and ribbon (four-dimensional) cases. As in those casesn-cells
(more precisely: their boundaries) are projected separately it is sufficient to consider just the
projections of (the boundaries of)σ, σ′ andσ′′. We make use of the fact that the boundaries
of σ andσ′ share the(n− 1)-cellµ. Thus, we choose the projections of the boundaries of
σ andσ′ such that the projections ofµ are identical as mirror images (as the orientation
is reversed). Furthermore, we make sure that the cable ending inµ lies near the boundary
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Fig. 5.4. Applying the gauge fixing to the projection, removing aT -coupon (cable).

of each projection, i.e., there is no wire between the cable ending and the boundary of the
projection. (In the spherical three-dimensional case this is achieved by choosing the point
piercing the boundary 2-spheres close to this cable. In the ribbon four-dimensional case this
is simply achieved by an appropriate three-dimensional isotopy.) Also we make sure in the
four-dimensional ribbon case that there are no crossings inside the projection ofµ, and that
blackboard framing applies there (again by isotopy). The projection we obtain is illustrated
by Fig. 4.7, and after inserting theT -coupon byFig. 4.8. It is now clear that removing the
T -coupon from the lines that connect the two projected cells (Fig. 5.4) we can pull the
projections together (until the dashed lines coincide) to obtain precisely a projection of (the
boundary of)σ′′ (seeFig. 5.5). This completes the proof.

Theorem 5.2. Let M be a manifold of dimension n andK, K′ cellular decompositions of
M which are related by a sequence of n-cell fusion moves. Then, the value of the circuit
diagram in a symmetric(or ribbon if n = 4, or spherical ifn = 3, or pivotal if n = 2)
category for a given labeling and choice of orientation of(n − 2)-cells is the same forK
andK′. In particular, the partition function for both is the same.

We turn now to the question what the analog of the “no-loop” condition for the gauge
fixed edges of conventional LGT is. The only situation that prevents us from removing a
cable and fusing the twon-cells that it connects is when thesen-cells are actually identical.
In that case the dual edge corresponding to the cable forms indeed a closed loop and we
are not allowed to gauge fix it. Conversely, given a set of dual edges that forms a loop, we
cannot remove all of the cables belonging to it. This is because just before removing the
last cable, the path formed by the gauge fixed edges would lie completely inside onen-cell.
Thus, the remaining cable would belong to an(n− 1)-cell which bounds this onen-cell on
both sides and therefore cannot be removed byn-cell fusion.

Fig. 5.5. Pulling the projected diagram together, so that a projection of the fusedn-cell results.
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In the symmetric category case we do not need to think of the lattice as arising from
a cellular complex. In that case we can express the gauge fixing move directly in terms
of the lattice. It corresponds to removing one edge by identifying all its points so that its
two bounding vertices become one. This is only allowed if these two bounding vertices are
distinct.

6. Observables

The standard observables of conventional LGT are Wilson loops or, more generally
(embedded) spin networks. A Wilson loopL is a subset of edges of the lattice that form
a closed loop, carry a consistent orientation, and it has attached the label of an irreducible
representation. The partition function(4.2)with a Wilson loop inserted takes the form

Z[L] =
∫ (∏

e

dge

)
χL

(∏
e∈L

ge

)
e−S, (6.1)

whereχL is the character of the irreducible representation carried byL. The expectation
value corresponding to the Wilson loop is thenZ[L]/Z. After expanding characters as in
Section 4.1we arrive at an expression

Z[L] =
∑
Vf

∏
f

αVf

ZVf [L] (6.2)

analogous to(4.4). The summandZVf [L] takes the modified form

ZVf [L] =
∫ (∏

e

dge

)
χL

(∏
e∈L

ge

)∏
f

χVf

∏
e∈f

ge

 . (6.3)

We proceed as inSection 4.1to obtain a diagrammatic representation. The characters are
represented by diagrams (Fig. 4.1) and inserted into the lattice as wires. We only have
an extra characterχL now, which is inserted into the lattice as a wire along the edges
designated by the data of the Wilson loop. Then the cables are inserted on the edges to
represent the integrations. The only difference toSection 4.1is that the cables for the edges
of the Wilson loop now include the Wilson loop wire as well. We obtain a modified circuit
diagram (seeFig. 6.1). The construction generalizes to several Wilson loops as well as to
arbitrary spin networks inserted into the lattice along edges (with intertwiners positioned on
vertices).

The generalization from conventional LGT to arbitrary symmetric categories is immediate
by taking the modified circuit diagram as a definition. The generalization to nonsymmetric
categories is less straightforward. The categorial structures needed to define the partition
function in dimensionnare related to isotopy in dimensionn−1 since it is possible to confine
the wires to the boundaries of then-cells. However, as there is in general no canonical way
of putting a Wilson loop on the boundaries of then-cells, the categorial structures needed
in the presence of a Wilson loop are those related to isotopy in dimensionn. Indeed, we
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Fig. 6.1. A circuit diagram with a Wilson loop (thick line).

can define the value of a circuit diagram with Wilson loop in dimension 3 only for ribbon
categories, and with the Wilson loop being framed. In dimension 4 there seems to be no
obvious definition beyond the symmetric case.

In dimension 2 we can continue to use pivotal categories and the definition of the partition
function extends to include Wilson loop and spin network observables in the obvious way.

To define the value of the circuit diagram with Wilson loop in dimension 3, we modify the
construction ofSection 4.2.1as follows. As there we put the wire pieces onto the boundaries
of the 3-cells. In contrast, we leave the ribbon that defines the Wilson loop completely inside
the 3-cells, except of course were it pierces a 2-disk that defines a cable. These intersections
of the ribbon with the 2-disks we choose such that they lie on the boundary of the 2-disks and
the ribbon is aligned with the boundary, facing the outside direction. While inSection 4.2.1
we project just the boundary 2-spheres of the 3-cells onto the plane, now we project the
whole 3-cells. However, we do this in such a way that the restriction of the projection to the
boundary 2-spheres is precisely a projection of the boundary 2-sphere as inSection 4.2.1.
Note that this involves making the same choices as there: a point in each 2-sphere and a point
in each circle bounding a 2-disk (cable). Thus, after including theT -coupons, we arrive at a
diagram that is exactly the same as the projected circuit diagram obtained inSection 4.2.1,
except that we have extra ribbon pieces in it. Furthermore, these ribbon pieces can have
crossings with the wire pieces. To obtain a proper ribbon diagram we only have to introduce
the blackboard framing for the wire pieces. The value of the diagram defines the partition
function with Wilson loop. Note that we can think of the framings of the wires as arising
directly from the cellular decomposition. Indeed, frame the wires of the circuit diagram
in the plane of the boundary 2-cells, face facing outwards from the 3-cell to which they
belong. In that case we are even free to project the 3-cells without the projections restricting
to projections of 2-spheres on the boundaries.

The proof of the independence of the value of the diagram from the choices made in
obtaining it is almost the same as for the spherical case without Wilson loops. The main
difference is that we now use the three-dimensional isotopy properties of ribbon graphs
instead of the two-dimensional isotopy properties in the spherical case. Furthermore, there
is one extra choice we have made, namely where to insert the Wilson loop ribbon into the
boundaries of the 2-disks defining the cables. However, it is easy to see that a different
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Table 2
Admissible types of categories for generalized LGT in different dimensions

Dim. LGT LGT + observable

≥5 Symmetric Symmetric
4 Ribbon Symmetric
3 Spherical Ribbon
2 Pivotal Pivotal

choice for a given cable just leads to extra braidings on both sides of the corresponding
T -coupon in the final diagram, which are inverse (being mirror images). As the braiding is
a morphism, it commutes with theT -projector (by property (d) inFig. 2.6) and can thus be
“pulled through” theT -coupon and “annihilated” with its inverse braiding. (Compare the
proof for the four-dimensional ribbon case,Section 4.2.2.)

This construction generalizes in the obvious way to ribbon spin networks by including
coupons. Thus, the observables in the three-dimensional ribbon case are framed Wilson
loops or, more generally, ribbon spin networks embedded into the manifold.

The types of admissible category for LGT with and without observables are summarized
in Table 2.

7. Boundaries and TQFT

Here we consider how our diagrammatic definition of the partition function extends to
manifolds with boundary.

LetM be a cellular manifold of dimensionn (oriented if the category is nonsymmetric)
with boundary∂M. (That is, a manifold with boundary having a cellular decomposition of the
boundary that extends to a cellular decomposition of the manifold.) We can straightforwardly
perform the construction of the circuit diagram inM, the only difference to the case without
boundary being that we now have wire pieces with free ends on the boundary. These wire
ends are actually inside cables that end on the boundary (seeFigs. 7.1 and 7.2for illustration).
After projection, done in the usual way we now obtain a morphism not from the unit object
1 to itself, but between the unit object and the object associated with the boundary. We have
the choice whether we want to consider this boundary object to determine the domain or
image of the morphism. Diagrammatically, this is just the choice of writing the diagram
such that all “loose” cable ends are aligned on the top (domain) or on the bottom (image).
Note that changing this choice exchanges objects and dual objects as the arrows on the
wires change their direction with respect to the vertical.

Assume for the moment that we have chosen the boundary object to lie in the image of
the morphism. What is this boundary object? We have one cable for each vertexv of (the
lattice associated with) the boundary (or(n − 1)-cell). Each cable has a bunch of wires,
with each piece of wire corresponding to one edgee meeting inv ((n − 2)-cell bounding
the (n − 1)-cell “before identification”). Thus we have a tensor product⊗v∈∂eVe as the
object defined by the wires in that cable. The object corresponding to the whole boundary
∂M is the tensor product of all these objects. Thus, the (open) circuit diagram gives rise to
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a morphism from1 to this tensor product. However, we have not used the fact that there are
cables around the wires on the boundary. Due to the decomposition property of the cables
(Proposition 2.12), the total morphism decomposes into a tensor product of morphisms:

Iv : 1 → ⊗
v∈∂e

Ve (7.1)

for each cable (and dual vertexv). (Note that this defines the individual morphismsIv only
up to scale. On the other hand the order of theIv in the tensor product does not matter due
to the identity1 ⊗ V = V ⊗ 1 for the category.) If we had made the other choice, namely
that the boundary object should lie in the domain of the morphism we would have obtained
a tensor product of morphisms of the type

I ′
v : ⊗

v∈∂e
Ve → 1. (7.2)

We can also think of the morphisms(7.1) or (7.2) as states on the boundary, as they form
vector spaces and can be paired in the obvious way. More precisely, a state would also

Fig. 7.1. The circuit diagram for a cellular manifold with boundary. The boundary is indicated by the dashed line.

Fig. 7.2. The circuit diagram on the boundary. The(n − 1)-cells are indicated by dashed lines. They are pierced
by cables (represented as gray disks). The wires in the cables lie at the endpoints of the thick lines. These lines
connect corresponding wire pieces. They are the edges of the spin network on the boundary.
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include the specification of the labelings of the edges. Thus, the complete description of
a state would be a labeling of the edges with arrows and simple objects, and a labeling of
the vertices by morphisms (as specified by(7.1) or (7.2)) between the objects that label
the incident edges. In fact, this is just an embedded spin network. We recover the well
known picture of spin networks as states on the boundary of spin foams (see[7]). Note that
to conform to our definition inSection 2.2in the four-dimensional ribbon case we would
expect the spin network to be a ribbon graph. We can indeed think of it in this way. To
this end consider the circuit diagram embedded into the three-dimensional subcomplex as
described inSection 4.2. The ribbons of the spin network are then obtained from the wire
pieces that touch the boundary by removing their parts inside the manifold and gluing them
together at the 2-cells on the boundary.

The states form a vector space since the morphisms form vector spaces and we can take
the direct sum over the labelings of edges by objects. Thus, for a cellular manifoldN of
dimensionn− 1 we define the state space to be

HN := ⊕
Ve

(
⊗
v

Mor

(
⊗
v∈∂e

Ve, 1
))

. (7.3)

The dual state spaceH∗
N is defined in the obvious way, by exchanging the arguments in

Mor. (Note that this also exchanges objects with dual objects as diagrams are turned upside
down.) The pairing between a state and a dual state is the obvious one if the labelings of
edges coincide. Otherwise the pairing is defined to be zero.

Summing over all labelings, a cellular manifoldM with boundary∂M gives rise to a state
(or dual state) and thus to a linear mapC → H∂M . (Note that in the case of infinitely many
inequivalent simple objects we need to consider a completion of the direct sum in(7.3) to
make this map algebraically well defined.) We use the usual weightsαV inside the manifold
while we use a square root

√
αV on the boundary, i.e., for the faces piercing the boundary.

Dually, we can also think of this as giving rise to a linear formH∂M → C ∼= Mor(1, 1),
by composition (pairing) with a spin network state. If∂M consists of several connected
components we can make different choices for the different components as to correspond
to domain or image of such linear maps. In particular, let us assume that∂M consists of two
components∂M = ∂M1 ∪ ∂M2. Now defining∂M1 to correspond to the domain and∂M2
to the image we obtain a linear map

Ω∂M : H∂M1 → H∂M2 (7.4)

in the obvious way.
Now assume we have two cellular manifoldsM,M ′ with boundaries∂M = ∂M1 ∪ ∂M2

and∂M ′ = ∂M ′
1 ∪ ∂M ′

2, respectively, as well as a cellular homeomorphism identifying
∂M2 ∼= ∂M ′

1. Gluing the manifolds together along∂M2, ∂M ′
1 we obtain a new oneM ′′ =

M ∪ M ′ with boundary∂M ′′ = ∂M1 ∪ ∂M ′
2. This gives rise to linear mapsΩM , ΩM′ and

ΩM′′ satisfying the composition property

ΩM′′ = ΩM′ ◦ΩM. (7.5)

This is because the circuit diagram forM ′′ is just the same as the ones forM ′ andM attached
to each other. This is also true for the projections (in the symmetric as well as the nonsym-
metric cases) which define its values, as the attachment is only between cables/T -coupons.
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Note that we use the projector property (c) of theT -coupon (Fig. 2.6) as in attaching
the circuit diagrams we have cables on both sides which we then “glue” to single cables.
Furthermore, the weights

√
αV on the boundary recombine to the usual weightsαV .

The state space of spin networks is complete in the following sense. Take the situation
above with the manifoldsM, M ′, etc. The spacesH∂M2 andH∂M′

1
are identified. Taking a

basis|ψ〉 of H∂M′
1

(consisting of a basis of morphisms for each labeling of edges) and the
dual basis〈ψ| ofH∗

∂M2
we can write this as∑

ψ

ΩM′ |ψ〉〈ψ|ΩM = ΩM′ ◦ΩM. (7.6)

Diagrammatically, this is just the insertion of decompositions for the cables crossing the
common boundary, as well as writing the sum over labelings of the wires crossing the
boundary explicitly.

What we arrive at is “almost” a TQFT. The topological objects are cellular manifolds
of dimensionn − 1 and their cellular cobordisms. This forms “almost” a category. (The
notion of identity morphism is lacking.) On the other hand we have the category of vector
spaces and linear maps. What we obtain is thus “almost” a functor from the “cellular
cobordism category” to the category of vector spaces by assigning state spaces to cellular
manifolds and linear maps to cellular cobordisms. In particular, the crucial composition
property(7.5)is satisfied. In the topologically invariant case (i.e., when the partition function
is independent of the cellular decomposition, seeSection 8.2) one can forget about the
cellular decomposition of the cobordism. The identity in the cobordism category is then the
“cylindrical” cobordism; for a manifoldN, this isI×N with I a closed interval. Quotienting
the state spaceHN by the kernel ofΩI×N then gives rise to a TQFT. See[14] for this kind
of quotient construction.

It is straightforward to combine boundaries and Wilson loop (or spin network) observ-
ables. Now the manifolds are allowed to have Wilson loops embedded in them, which may
end on the boundary. Thus, the boundaries are cellular manifolds with possible extra labels
on their vertices indicating the object label of a Wilson loopL piercing the boundary at this
vertex. The morphisms (and states) on the boundary are modified so as to include the extra
objects. The change is just the inclusion of the the object as an extra factorVL in the tensor
product(⊗v∈∂eVe) ⊗ VL for this vertex. Everything else in the above construction works
as before. Thus, we obtain “almost” a TQFT. Now it is defined on the “almost category”
of cellular manifolds with possible extra object labels on the dual vertices. The cobordisms
are now cellular manifolds which have Wilson loops (or more generally spin networks)
embedded, as discussed inSection 6, with corresponding labels. This works now for sym-
metric categories in any dimensions, and for ribbon categories in dimension 3. In fact, in
the latter case, as the Wilson loops are ribbons, there is slightly more structure not only on
the cobordisms (as already discussed inSection 6), but also on the boundaries. The ends
of the Wilson loops on the boundary need to be considered as carrying a direction which
determines the framing. This is similar to a situation considered in[23], where a TQFT with
Wilson loops in dimension 3 is constructed from the surgery invariants of[13].

Finally (without working out any details) we mention that given extra complex structure
on the category, we can make the state spaces into Hilbert spaces. For example, if the
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category is the category of representations of a compact Lie group we can identify dual
representations as conjugate representations. Thus, we obtain Hilbert space structures on
the representations and in turn on the relevant intertwiner spaces (between the trivial and
an arbitrary representation).

8. Special cases

8.1. Spin foams and nj-symbols

We discuss here how the conventional picture of spin foam models employing poly-
hedral “recoupling diagrams” is recovered. Consider a cable around a number of wires
carrying object labelsV1, . . . , Vn representing the morphismTV1⊗···⊗Vn . By definition
(Proposition 2.12), we can decompose it into morphismsΦi : V1 ⊗ · · · ⊗ Vn → 1 and
Φ′
i : 1 → V1 ⊗ · · · ⊗ Vn such that

TV1⊗···⊗Vn =
∑
k

Φ′
kΦk. (8.1)

We depict this diagrammatically as inFig. 8.1. The morphisms are here represented by
coupons which are shrunk to dots. Note that the dashed line representing the unit object1
is normally omitted and here only drawn for illustration.

We can introduce such a decomposition for every cable in a circuit diagram. The resulting
graph then consists of disconnected polyhedral diagrams, one for eachn-cell (or vertex of
the associated lattice). The lines of the polyhedra are the wires while its corners arise where
the wires entered a cable. The partition function now has an extra summation besides the one
over labelings of faces with simple objects. This is the summation over the decomposition
(8.1) for every edge. Thus, we can express the partition function as

Z =
∑
Vf

∏
f

αVf

∑
Φe

∏
v

Av(Vf ,Φe). (8.2)

Here,Φe denotes a morphism between the tensor product of objects corresponding to the
wires on the edgee, and we sum over labelings with such morphisms as prescribed by(8.1).
Av denotes the value of the polyhedral diagram arising at the vertexv. It depends on the
labelings of the faces and edges that meet inv.

Fig. 8.1. Decomposition of theT -morphism on a tensor product.
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Formula(8.2) is essentially the general definition of a spin foam model, except that one
usually requires the weightαV to be the dimension of the representationV , i.e., αV :=
dimV (or for general categoriesαV := loopV ). For general spin foam models, one has some
freedom in defining the “vertex amplitude”Av. The one we obtain here (defined by the
polyhedral diagrams as described above and with the special choice of weights) defines the
spin foam models of BF-type. These are topological and give rise to state sum invariants
(see the next section).

Usually one chooses bases of the decompositions(8.1)in a globally coherent way for the
whole category so that they can be indexed. However, there is no canonical way of doing
this. One can compare this to a choice of “coordinates”. In this sense, the circuit diagram
formulation of the partition function is “coordinate-free”. In contrast, for a definition that
starts out from(8.2), one would have to show independence ofZ under the choice of bases.

The spin foam approach (and related state sum models) are normally restricted to a
simplicial decomposition of the manifold. This has the effect that the number of edges
meeting in a vertex and the number of faces bounded by an edge is a fixed number just
depending on the dimension of the manifold. This means that just one type of polyhedral
diagram with fixed number of edges and vertices appears. Thus, one has only one type of
“recoupling symbol” as such polyhedral diagrams are called. For example, in dimension 3
this is a 6j-symbol and in dimension 4 a 15j-symbol. The standard approach at showing
that a state sum of the type(8.2) is well defined (or even a topological invariant) is by
using properties of these recoupling symbols. Of course, this seems rather hopeless if
infinitely many types of recoupling symbols can occur, hence the restriction to simplicial
decompositions.

8.2. Weak coupling limit, state sum invariants and BF-theory

For conventional LGT (with a compact Lie groupG) one requires the local actionσ
(4.1) to recover the continuum action of Yang–Mills theory in the limit of small lattice
spacing. In particular,σ will be a function of the coupling constantλ of the continuum
theory. Then, the Boltzmann weight e−σ(λ,g) tends to the delta functionδ(g) in the weak
coupling limitλ → 0. Thinking of the partition function as a path integral over connections,
this means that only flat connections contribute. In terms of the weights, this limiting case
is αV = dimV . In our formulation, there is nothing manifestly singular about this case.
However, the partition functionZ will in general not converge anymore. An alternative
way to obtain this partition function is as a discretization of BF-theory. Integrating out the
B-field yields the delta function on the connection.

The attractive feature about BF-theory is that it is a topological theory. That means, the
discretized partition function depends only on the topology of the manifold. It is the same
(up to a factor) for any cellular decomposition of it. This extends beyond the group case
and for the various categories we have considered the “topological” weight is given by
αV = loopV . Indeed, our construction recovers the various state sum invariants in this
case. While for group representations loopV = dimV , we have loopV = sdimV (the
super-dimension) in the supergroup case and loopV = qdimV (the quantum dimension)
in the quantum group case.
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In two dimensions the situation is rather simple (as LGT is then solvable). Consider a
compact connected oriented 2-manifoldM with some cellular decomposition and a pivotal
categoryC. Induce the orientations of the faces of the associated lattice fromM. Project
onto the plane with positive (anti-clockwise) orientation and setαV := loop− V . We apply
the identity ofProposition 2.14to all cables of the circuit diagram. If any two adjacent
faces are labeled with different objects, the partition function vanishes. Thus, we have only
one sum over simple objects. All the cables are replaced with the diagram at the right hand
side ofFig. 2.9. Thus, we just obtain a bunch of loop diagrams with negative (clockwise)
oriented arrows. Indeed, we obtain one loop for each vertex (2-cell), one inverse loop for
each edge (1-cell) and one loop for each face (0-cell), from the weight. Consequently

Z =
∑
V

(loop− V)χ (8.3)

with χ = n2 − n1 + n0 the Euler characteristic ofM (ni the number ofi-cells). (Note that
we could have equally chosenαV := loop+ V and projected with negative orientation. This
has the same effect as interchangingV andV ∗. Thus, the resultingZ is the same.)

In higher dimensions the above-mentioned factor has to be taken into account to obtain
a true invariant. The invariant is

Z̃ := κ−χLZ with κ :=
∑
V

(loopV)2 (8.4)

andχL is the “Euler characteristic” of the associated lattice. That isχL := nv − ne + nf =
nd − nd−1 + nd−2 in dimensiond. AsχL = χ an invariant in two dimensions there was no
need for this factor in that case.

In three dimensions for SU(2) we recover the Ponzano–Regge model[9], which yields a
divergent partition function as the sum over representation labels is infinite. For SUq(2) at a
root of unity (giving rise to a ribbon category, see next section) we recover the Turaev–Viro
state sum[14], which defines interesting 3-manifold invariants. The generalization to spher-
ical categories (to which our definition extends) was achieved by Barrett and Westbury[20].
The proof of topological invariance in our framework turns out to be surprisingly simple, as
it can be cast purely in the diagrammatic language[30]. In fact, while previous proofs have
employed simplicial decompositions, the generalization to cellular decompositions makes
the proof even simpler. This is because it can be cast in terms of moves between cellular
decompositions which correspond to “elementary” diagrammatic identities.

In four dimensions, the group SU(2) yields Ooguri’s analogue[31] of the Ponzano–Regge
model. The quantum group SUq(2) yields the invariant of 4-manifolds of Crane and Yetter
[16], later generalized to ribbon categories[17]. The proof of topological invariance in our
framework should be very similar to the three-dimensional one.

8.3. Modular categories and chain mail

Interesting (finite and nontrivial) examples of state sum invariants on the one hand and
models of quantum gravity with cosmological constant[10] on the other hand are obtained
fromq-deformed groups at roots of unity. These give rise to quasimodular categories (in the
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Fig. 8.2. Identity for theT -morphism in a modular category. The sum runs over equivalence classesV of simple
objects. The arrow directions on the loops are irrelevant and blackboard framing is implied.

terminology of Turaev[23]) with finitely many equivalence classes of simple objects. Al-
though these categories are not semisimple, they can be turned into semisimple ones through
a process of “purification”. This is a quotient construction on the morphism spaces[23]. The
obtained categories aremodular, a special case of ribbon categories with a nondegeneracy
condition on the braiding.

For modular categories theT -morphism can be expressed as a sum over diagrams with a
loop going round a line (seeFig. 8.2). (κ is defined as above.) Consider the three-dimensional
setting specialized to modular categories. The circuit diagram can be constructed as a ribbon
diagram freely embedded into the cellular manifold (not restricted to the two-dimensional
subcomplex) (seeSection 6). As the cables of the embedded circuit diagram are disks
(shortened cylinders), we can use the above identity to replace them by loops going round
the wire strands. This converts the circuit diagram into a pure ribbon link. We obtain one
extra summation over simple objects for each replaced cable.ZVf of Definition 4.2is thus
decomposed as

ZVf = κ−ne ∑
Ve

ZVf ,Ve (8.5)

with ne the number of edges and the sum ranging over all labelingsVe of edges with equiv-
alence classes of simple objects. The valueZVf ,Ve is now given by the Reshetikhin–Turaev
invariant[13] (in its TQFT normalization) of the labeled ribbon link in the given manifold.
This is (in the topological case) essentially a categorial analogue of Robert’s Skein theoretic
“chain mail” construction of the Turaev–Viro invariant[32].

8.4. Comparison with previous generalizations of LGT

In the three-dimensional case Boulatov[5] put forward a proposal forq-deformed LGT.
Indeed, this proposal amounts essentially to the chain mail construction of modular LGT
considered above.

In the four-dimensional case Pfeiffer[6] recently constructed a ribbon category gener-
alization of LGT for simplicial decompositions of the underlying manifold. Our partition
function specializes to his in the simplicial case. However, as general LGT is not topological,
the generalization to cellular decompositions is a substantial improvement. For example,
hypercubic lattices (commonly used in LGT) arise from cellular decomposition that are not
simplicial.
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9. Outlook

In this closing section we discuss several possible developments suggested by the present
work.

For (ordinary) LGT, the diagrammatic formulation of the partition function introduced
here is a further step in developing the dual model[3]. In the strong-coupling regime,
contributions to the partition function with “small” representation labels dominate. The
diagrammatic techniques introduced here should help to deal with those contributions in
order to extract a strong-coupling expansion. On the other hand, the weak coupling regime
is equally accessible through our formalism. Indeed, the proof of topological invariance
in the limit employs elementary diagrammatic identities[30]. The “expansion” of these
identities might thus lead to an “expansion” of LGT around this topological limit. This
would provide a new type of weak coupling expansion (not destroying the global structure
of the gauge group) possibly shedding new light on the continuum limit.

The generalization of LGT beyond groups might be useful in several ways. First of
all, it makes it possible to put supersymmetric gauge theories on the lattice. It would be
interesting to see how improvements of convergence and renormalizability of such theories
manifest themselves on the lattice. Going further, LGT with quantum gauge groups could be
something very natural. This is suggested by the (related) observations that “quantization”
of the group can occur both in making sense of a divergent path integral[4] or in introducing
a term in the Lagrangian which corresponds to a cosmological constant[10]. Indeed, the
regularizing effect ofq-deformed groups at roots of unity is immediately apparent in our
LGT framework, as it makes the set of equivalence classes of simple objects finite and thus
the partition function manifestly finite and well defined.

For BF-theory one immediate application of our formalism is three-dimensional quantum
supergravity. Indeed, in the same way that BF-theory with gauge group SO(3) or SO(2,1)
describes pure gravity in three dimensions, BF-theory with OSp supergroups describes su-
pergravity in three dimensions[33]. Furthermore, in the same way as quantum BF-theory
is also in higher dimensions a starting point for quantum gravity one could consider quan-
tum BF-theory with the relevant supergroup a starting point for quantum supergravity. In
particular, this might be of interest in string theory, where 11-dimensional supergravity is
considered one limit of the conjectured M-theory. A promising model for pure quantum
gravity in four dimensions was proposed by Barrett and Crane[11]. This is based on a
modification of BF-theory in its spin foam formulation. Nevertheless, the Barrett–Crane
model can still be expressed in the diagrammatic language introduced here. Thus, the di-
agrammatic methods here might help in understanding and developing this model and its
“relatives”.

An open problem in approaches to quantum gravity is how to perform a “sum over
topologies”. Recently, a proposal has been made to generate spin foams (i.e., essentially
topologies) as Feynman graphs of a quantum field theory of fields living on the gauge
group[34]. On the other hand it has been shown in[35] how Feynman diagrams can be
rigorously considered as diagrams denoting morphisms (in the sense ofSection 2.2) in the
category of representations of the symmetry group of the quantum field theory. Thus, for
such generating field theories we obtain immediately a representations of the emerging spin
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foams (space–times) in terms of the diagrammatics introduced here (using, in particular
Section 3.1). Furthermore, the main emphasis in[35] was the generalization to braided
categories (similar to ribbon categories). Thus, this provides a way to extend such generating
field theories to quantum groups in the necessary absence of additional topological input
(as we required inSection 4.2).
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